Selected Solutionsfor Chapter 12
Binary Search Trees

Solution to Exercise 12.1-2

In a heap, a node’s key is both of its children’s keys. In a binary search tree, a
node’s key is> its left child’s key, but< its right child’s key.

The heap property, unlike the binary-searth-tree propeidgsn't help print the
nodes in sorted order because it doesn't tell which subtr@enode contains the
element to print before that node. In a heap, the largesterlesmaller than the
node could be in either subtree.

Note that if the heap property could be used to print the keysorted order in
O(n) time, we would have am® (n)-time algorithm for sorting, because building
the heap takes onl@(n) time. But we know (Chapter 8) that a comparison sort
must takeQ2(n Ig n) time.

Solution to Exercise 12.2-7

Note that a call to REE-MINIMUM followed byn — 1 calls to TREE-SUCCESSOR
performs exactly the same inorder walk of the tree as dogztitedure NORDER-
TREE-WALK. INORDER-TREE-WALK prints the TREE-MINIMUM first, and by
definition, the TREE-SUCCESSOROof a node is the next node in the sorted order
determined by an inorder tree walk.

This algorithm runs irf®(r) time because:

* Itrequires2(n) time to do the: procedure calls.
* Ittraverses each of the— 1 tree edges at most twice, which talk@én) time.

To see that each edge is traversed at most twice (once govgttie tree and once
going up), consider the edge between any noded either of its children, node

By starting at the root, we must traverge, v) downward fromu to v, before
traversing it upward fromv to u. The only time the tree is traversed downward is
in code of TREE-MINIMUM , and the only time the tree is traversed upward is in
code of TREE-SuccEssoRwhen we look for the successor of a node that has no
right subtree.

Suppose that is u’s left child.



12-2

Selected Solutions for Chapter 12: Binary Search Trees

» Before printingu, we must print all the nodes in its left subtree, which is eabt
atv, guaranteeing the downward traversal of efige).

» After all nodes inu’s left subtree are printea, must be printed next. Procedure
TREE-SUCCESSORtraverses an upward path#dfrom the maximum element
(which has no right subtree) in the subtree rooted dthis path clearly includes
edge(u, v), and since all nodes in’s left subtree are printed, edde, v) is
never traversed again.

Now suppose that is u’s right child.

» After u is printed, TREE-SUCCESSORu) is called. To get to the minimum
element iru’s right subtree (whose root ig, the edgdu, v) must be traversed
downward.

» After all values inu’s right subtree are printed,REE-SUCCESSORSS called on
the maximum element (again, which has no right subtree)drstibtree rooted
at v. TREE-SUCCESSORtraverses a path up the tree to an element after
sinceu was already printed. Edda, v) must be traversed upward on this path,
and since all nodes in's right subtree have been printed, edgev) is never
traversed again.

Hence, no edge is traversed twice in the same direction.
Therefore, this algorithm runs i@ (n) time.

Solution to Exercise 12.3-3

Here’s the algorithm:

TREE-SORT(A)

let T be an empty binary search tree
fori = 1ton

TREE-INSERT(T, A[i])
INORDER-TREE-WALK (7. root)

Worst case®(n?)—occurs when a linear chain of nodes results from the regeate
TREE-INSERTOperations.

Best case®(n Ign)—occurs when a binary tree of heigh{lg ) results from the
repeated REE-INSERTOperations.

Solution to Problem 12-2

To sort the strings of , we first insert them into a radix tree, and then use a preorder
tree walk to extract them in lexicographically sorted ordemne tree walk outputs
strings only for nodes that indicate the existence of a gt(ire., those that are
lightly shaded in Figure 12.5 of the text).



Sdlected Solutions for Chapter 12: Binary Search Trees 12-3

Correctness

The preorder ordering is the correct order because:

Any node’s string is a prefix of all its descendants’ stringd &ence belongs
before them in the sorted order (rule 2).

A node’s left descendants belong before its right desceandgtause the corre-
sponding strings are identical up to that parent node, atiteinext position the
left subtree’s strings have 0 whereas the right subtreergysthave 1 (rule 1).

Time
On).

Insertion take® (n) time, since the insertion of each string takes time propor-
tional to its length (traversing a path through the tree veHeangth is the length
of the string), and the sum of all the string lengths.is

The preorder tree walk take3(n) time. It is just like NORDER-TREE-WALK

(it prints the current node and calls itself recursively ba keft and right sub-
trees), so it takes time proportional to the number of nodebe tree. The
number of nodes is at most 1 plus the sum ¢f the lengths of the binary
strings in the tree, because a lengtstring corresponds to a path through the
root andi other nodes, but a single node may be shared among many string
paths.



