
Selected Solutions for Chapter 12:
Binary Search Trees

Solution to Exercise 12.1-2

In a heap, a node’s key is� both of its children’s keys. In a binary search tree, a
node’s key is� its left child’s key, but� its right child’s key.

The heap property, unlike the binary-searth-tree property, doesn’t help print the
nodes in sorted order because it doesn’t tell which subtree of a node contains the
element to print before that node. In a heap, the largest element smaller than the
node could be in either subtree.

Note that if the heap property could be used to print the keys in sorted order in
O.n/ time, we would have anO.n/-time algorithm for sorting, because building
the heap takes onlyO.n/ time. But we know (Chapter 8) that a comparison sort
must take�.n lg n/ time.

Solution to Exercise 12.2-7

Note that a call to TREE-M INIMUM followed byn � 1 calls to TREE-SUCCESSOR

performs exactly the same inorder walk of the tree as does theprocedure INORDER-
TREE-WALK . INORDER-TREE-WALK prints the TREE-M INIMUM first, and by
definition, the TREE-SUCCESSORof a node is the next node in the sorted order
determined by an inorder tree walk.

This algorithm runs in‚.n/ time because:

� It requires�.n/ time to do then procedure calls.
� It traverses each of then � 1 tree edges at most twice, which takesO.n/ time.

To see that each edge is traversed at most twice (once going down the tree and once
going up), consider the edge between any nodeu and either of its children, node�.
By starting at the root, we must traverse.u; �/ downward fromu to �, before
traversing it upward from� to u. The only time the tree is traversed downward is
in code of TREE-M INIMUM , and the only time the tree is traversed upward is in
code of TREE-SUCCESSORwhen we look for the successor of a node that has no
right subtree.

Suppose that� is u’s left child.



12-2 Selected Solutions for Chapter 12: Binary Search Trees

� Before printingu, we must print all the nodes in its left subtree, which is rooted
at�, guaranteeing the downward traversal of edge.u; �/.

� After all nodes inu’s left subtree are printed,u must be printed next. Procedure
TREE-SUCCESSORtraverses an upward path tou from the maximum element
(which has no right subtree) in the subtree rooted at�. This path clearly includes
edge.u; �/, and since all nodes inu’s left subtree are printed, edge.u; �/ is
never traversed again.

Now suppose that� is u’s right child.

� After u is printed, TREE-SUCCESSOR.u/ is called. To get to the minimum
element inu’s right subtree (whose root is�), the edge.u; �/ must be traversed
downward.

� After all values inu’s right subtree are printed, TREE-SUCCESSORis called on
the maximum element (again, which has no right subtree) in the subtree rooted
at �. TREE-SUCCESSORtraverses a path up the tree to an element afteru,
sinceu was already printed. Edge.u; �/ must be traversed upward on this path,
and since all nodes inu’s right subtree have been printed, edge.u; �/ is never
traversed again.

Hence, no edge is traversed twice in the same direction.

Therefore, this algorithm runs in‚.n/ time.

Solution to Exercise 12.3-3

Here’s the algorithm:

TREE-SORT.A/

let T be an empty binary search tree
for i D 1 to n

TREE-INSERT.T; AŒi �/

INORDER-TREE-WALK .T:root/

Worst case:‚.n2/—occurs when a linear chain of nodes results from the repeated
TREE-INSERToperations.

Best case:‚.n lg n/—occurs when a binary tree of height‚.lg n/ results from the
repeated TREE-INSERToperations.

Solution to Problem 12-2

To sort the strings ofS , we first insert them into a radix tree, and then use a preorder
tree walk to extract them in lexicographically sorted order. The tree walk outputs
strings only for nodes that indicate the existence of a string (i.e., those that are
lightly shaded in Figure 12.5 of the text).



Selected Solutions for Chapter 12: Binary Search Trees 12-3

Correctness

The preorder ordering is the correct order because:

� Any node’s string is a prefix of all its descendants’ strings and hence belongs
before them in the sorted order (rule 2).

� A node’s left descendants belong before its right descendants because the corre-
sponding strings are identical up to that parent node, and inthe next position the
left subtree’s strings have 0 whereas the right subtree’s strings have 1 (rule 1).

Time

‚.n/.

� Insertion takes‚.n/ time, since the insertion of each string takes time propor-
tional to its length (traversing a path through the tree whose length is the length
of the string), and the sum of all the string lengths isn.

� The preorder tree walk takesO.n/ time. It is just like INORDER-TREE-WALK

(it prints the current node and calls itself recursively on the left and right sub-
trees), so it takes time proportional to the number of nodes in the tree. The
number of nodes is at most 1 plus the sum (n) of the lengths of the binary
strings in the tree, because a length-i string corresponds to a path through the
root andi other nodes, but a single node may be shared among many string
paths.


